CSSE 574 – Software Architecture & Design
RHIT

Due Mon, Oct 21, 2013, 7 AM
Take-home exam 1 - Key.

A. Instructions
Please take 2-3 hours for this exam – honor system. It’s open book. (And you can look things up on the Internet, etc., if you like!) I’m looking for maybe 2 pages typed, single spaced, in addition to the length of the questions and probably a bit more for the figures in the second part! Add your answer by typing under each question.

On each question, put some depth. I hope to see a representation of your own thinking, like applications of the ideas, beyond what’s in the book.

B. Questions - Short Answer (typically 2 - 3 sentences)
Grading – I counted these 7 questions as 10 points each.
1. Design vs coding: There are three goals for design: (1) Get out a product as soon as possible. (2) Make it high quality / good enough that the customer likes it. (3) Get it to last through lots of updates later. Which two of these goals are most in harmony, and why? And – how would you fix the third one to make it in synch, how would you do that?
Answer: The first conflicts with both of the last two, both of which demand more time that it takes just to get the thing into the customer’s hands. Arguably the last one also is in conflict with the other two, because it is associated with passing responsibility on to someone else – whoever maintains the system. Therefore, it’s hard to hold the initial developer responsible for those results.

Assuming the first one is the one not in synch, the process for it would have to become a compromise between speed and quality / maintainability. That is, more checks for those goals being met, early on.

The fixes will be inventive answers – I’m looking forward to hearing those. One would be to have representatives of all the stakeholders pass judgment on a product before it is called “done” – including maintenance developers.
2. Domain modeling? Why is the domain model intentionally wider in scope? And, how do you know how far to go in generalizing it?
Answer: The model’s purpose is to start a stream of generally useful design artifacts in the domain, that can be reused, from one generation of product to the next, and from existing products to new product concepts for the same customers. Or, become expert in a domain and thereby attract new customers.
How far to go in generalizing it is a really good question, but it surely depends partly on the ambitions of the development organization, to occupy a wide product range within the domain.
3. Brick busting SSD’s: The “Brick Buster Video System” used for home works 1 and 2 had its developers trying to move a client from an old style of doing business to a new style (online video store). Consider this system sequence diagram for their current domain:

[image: image1.jpg]$5D-1: Use Case 1 Main Flow
‘with multiple Items and Credit
Card payment

)

SelectVideoToRent(ID,duration) _, |
a

makePayment(method, amount) !

videos, returninstructions, receipt

What would have to be changed about this SSD, to make it work with online retailing? And, could we have anticipated that change, without losing knowledge about how the old system worked?
Answer: The availability isn’t quite the same issue, because the online store doesn’t “use up” the videos as they are shown. The physical handing over of videos, receipt and other items isn’t done online. However, managing the stream, online, is a big deal toward providing customer satisfaction. E.g., if the customer gets detached from the flow during the show, what happens next? Finally, all this production happens online after the payment is processed – it’s new.
The last question is really one of representation, since, at the moment of transition, obviously someone has to know about both old and new. Usually, showing both at once requires some generalization. I think the dashed arrows in the picture, showing what BBVS does, could simply have been phrased differently and still would have covered what went on, in both environments.
4. Operation contracts: OC’s are very precise in detailing the actions required of a system to get something right. Compare OC’s to some graphical method you know, like state machine diagrams (Larman Ch 29) or UML Activity Diagrams (Larman Ch 28), in terms of (a) the relative advantages of each and (b) when you might choose one over the other.
Answer: (a) OC’s are more like the description that goes with a formal diagram like a state machine. Indeed, they are designed to go with use cases and sequence diagrams. They are explicit verbalizations vs being images, for sure. They are heavy on description of the pre and post conditions, though they do also provide action that takes place in their sentences.

(b) You would choose OC’s when a precise verbalization will communicate best, from outside the project, as to the required flow of information and, especially, what must be created as a result of some action. You would choose the image when an overall concept of what’s happening is needed.
5. Classic OO design: Everyone uses design class diagrams, even people just starting to do OO programming. Yet, in production systems, you often will not see current DCD’s as part of the system documentation. With relational databases, on the other hand, there often is a “master E-R diagram” documenting how the tables are put together. So, are we OO developers just slackers, or is there a rational explanation for this? Justify your answer!
Answer: I think we are just sloppy. One can just push a button and recover these designs from code, and they do give a high-level picture. I agree there should be more standard tools that go backwards and forwards, but the real problem may be that we use multiple languages for coding, while one standard one that has this capability for RDBMS’s.
6. Conventions: Larman condenses patterns to a format like Name / Problem / Solution. The classic “patterns community” has a slightly longer standard form using Name / Intent / Problem / Context / Forces / Solution / Rationale / Resulting Context. This form is for experts! Find some examples using the expanded form, and describe the advantage of adding Context, in particular:
Answer: Your examples will vary. There are some at the Hillside Group’s site, for instance. Jim Coplien uses the format, like in http://hillside.net/component/content/article/50-patterns-library/patterns/222-design-pattern-definition. Other examples could be found by Googling for something like “patterns examples problem context forces”, getting results like https://wiki.engr.illinois.edu/download/attachments/121733136/mmfj-pattern.pdf?version=2&modificationDate=1260165759000.
Patterns are often defined as “problems in a context,” so this is at the core of using experience and wisdom. “When” is something a good idea? Providing Context separately (or specifically) tends to clarify why you use the problem is important, and leads to having the Solution point back to that rationale.
7. Different context: Look at the Context pattern, in contrast to the last question. It’s at http://www.cs.wustl.edu/~schmidt/PDF/Context-Object-Pattern.pdf . The pattern allows you to ignore lower-level particulars. Compare this pattern to Indirection, Pure Fabrication, and Protected Variation, noting where it differs from these GRASP II patterns:
Answer: This item came up 404 on the Internet when I checked back, so, we’ll see if your answers show that! The same source can be found now at http://www.dre.vanderbilt.edu/~schmidt/PDF/Context-Object-Pattern.pdf.
The idea of the pattern is to maintain the context for a message being passed around from one part of middleware to another, avoiding the need to access information in a critical section or requiring the application being served to update it.

This is clearly a more specific pattern than the GRASP II patterns. It does protect the app from variations and it does fabricate a data object to accompany middleware requests.

C. Questions - Problem Solving (include figures and explain them in a few sentences)
Grading – I counted these two questions as 15 points each.
1. GRASPing at Boardwalk: At http://mokon.net/wp-content/uploads/2013/05/MonopolyUML.jpg is a UML diagram for a Monopoly game. See if you can use all five of the initial GRASP patterns in Larman’s Ch 17 to analyze this Monopoly game design. E.g., Does it use any Creators? How would you rate it’s Coupling and Cohesion, generally, and why? Does it make good use of Information Experts? What does it use for a Controller, and does that make sense?
Answer: This has more classes than Larman’s Monopoly designs, and so likely has individual controllers and lower-level information experts. It uses subclasses to get more individual types of board objects; with luck, that means more cohesion, not less.

Board remains the central class here, and it looks to be creating lots of “board pieces,” although it may indirectly create all the properties through the “OwnableGroup,” possibly by way of the “Deeds”. The parent, “Card,” may create all the child cards, but more likely it is the “deck” classes.

I believe “Board” remains the main information expert, with some knowledge also in “Player” and especially “Banker.” One could argue that “StrategicAI” also is an information expert!

Not clear that there is a “Controller”though this could be “Board”. This role could be distributed, and a source of some unnecessary coupling. There is cohesion to the decisions to make the families of classes shown.
2. Visibility decision: Find a segment of your own code for some class A that has “attribute visibility” of some class B. Copy that code in here and describe what’s going on. Then:
a. Change the code so that it would instead have “parameter visibility” of class B. Show what that looks like, and explain at least one advantage and disadvantage of doing it that way.
b. Change the code so that it would instead have “local visibility” of class B. Show what that looks like, and explain at least one advantage and disadvantage of doing it that way.
Answer: The answers depend on the situation picked. Generally, with less permanent visibility you have to pass or get the identity of class B as part of some possibly recurring operation, which makes the parameter passing, etc. messier. On the other hand, there is no obligation for A to maintain the correct value of B and, indeed, there may be no need for A to have a continued existence at all!
Put your .docx file in the Moodle drop box provided by 7 AM, Monday, Oct 21. (I may use Word’s change mode to comment and grade it.)

